Exam. Code : 209001

Subject Code: 4765

M.Sc. Physics 1st Semester COMPUTATIONAL TECHNIQUES

Paper—PHY-404

Time Allowed—Three Hours] [Maximum Marks—100

Note:—Attempt FIVE questions in all, selecting ONE question from each section. The Fifth question may be attempted from any section. Use of Scientific Calculator is allowed.

SECTION—A

- 1. (a) Discuss in detail the Formatted Input-Output Functions in MATLAB.
 - (b) Write a program to plot the curve given by equation $y = \sin(x)$, as x varies from 0 to 2π . Also label the x- and y-axis and provide a suitable title to the plot.
- 2. (a) How can help be sought for various commands in MATLAB? Describe various commands used for seeking help.

1

2369(2119)/HH-7881

(Contd.)

a2zpapers.com

(b) Write a MATLAB program to find the length of the third side and area of the triangle, if two sides a = 3.2 and b = 4.6 of triangle and angle theta = 60° between these sides.

SECTION—B

3. (a) Using Newton's divided difference formula, evaluate f(6) for given values:

X	5	7	11	13	21
f(x)	150	392	1452	2366	9702

(b) Derive the Newton-Gregory formula for forward interpolation with equal intervals. 10

- 4. (a) Form the difference table of $f(x) = x^3 3x^2 + 5x + 7 \text{ for the values of } x = 0,$ 2, 4, 6, 8 and also compute f(10).
 - (b) Derive the Lagrange's interpolation formula. 10

SECTION—C

5. (a) Solve by Euler's modified method of the following differential equation for x = 0.02 by taking

$$h = 0.01$$
, $\frac{dy}{dx} = x^2 + y$, $y = 1$ when $x = 0$.

10

10

(b) Derive Weddle's rule of numerical integration.

10

2369(2119)/HH-7881

2

(Contd.)

a2zpapers.com

6. (a) The acceleration a(km/hr²) of a train which starts from rest, is given at fixed intervals of time *t* in hours as follows:

t(hours)	0	2	4	6	8	10	12	14	16	18	20
a(km/hr ²)	0	10	18	25	29	32	20	11	5	2	0

Estimate approximately the velocity acquired by the train in 20 hours using Simpson's one-third rule.

(b) Explain working of second order Runge-Kutta method.

SECTION-D

- (a) Compute the real root of x³ 5x + 3 = 0 in the interval [1, 2] by Regula Falsi Method by performing four iterations.
 - (b) Discuss the convergence of Newton-Raphson method in detail.
- 8. (a) Explain the working of Gauss-Elimination method.
 - (b) Find approximation to $\sqrt{3}$ correct to two decimal places using bisection method.