Exam. Code : 209001 Subject Code : 4765

M.Sc. Physics $1^{\text {st }}$ Semester COMPUTATIONAL TECHNIQUES

Paper-PHY-404

Time Allowed-Three Hours] [Maximum Marks-100
Note :-Attempt FIVE questions in all, selecting ONE question from each section. The Fifth question may be attempted from any section. Use of Scientific Calculator is allowed.

SECTION-A

1. (a) Discuss in detail the Formatted Input-Output Functions in MATLAB.
(b) Write a program to plot the curve given by equation $y=\sin (x)$, as x varies from 0 to 2π. Also label the x - and y -axis and provide a suitable title to the plot.
2. (a) How can help be sought for various commands in MATLAB ? Describe various commands used for seeking help.

a2 zpapers.com

(b) Write a MATLAB program to find the length of the third side and area of the triangle, if two sides $a=3.2$ and $b=4.6$ of triangle and angle theta $=60^{\circ}$ between these sides.

SECTION-B

3. (a) Using Newton's divided difference formula, evaluate $f(6)$ for given values :

x	5	7	11	13	21
$f(x)$	150	392	1452	2366	9702

(b) Derive the Newton-Gregory formula for forward interpolation with equal intervals. 10
4. (a) Form the difference table of $f(x)=x^{3}-3 x^{2}+5 x+7$ for the values of $x=0$, $2,4,6,8$ and also compute $f(10)$.
(b) Derive the Lagrange's interpolation formula. 10

SECTION-C

5. (a) Solve by Euler's modified method of the following differential equation for $\mathrm{x}=0.02$ by taking $\mathrm{h}=0.01, \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}^{2}+\mathrm{y}, \mathrm{y}=1$ when $\mathrm{x}=0$.
(b) Derive Weddle's rule of numerical integration.

2369(2119)/HH-7881
2
(Contd.)

a2zpapers.com

6. (a) The acceleration $\mathrm{a}\left(\mathrm{km} / \mathrm{hr}^{2}\right)$ of a train which starts from rest, is given at fixed intervals of time t in hours as follows :

t (hours)	0	2	4	6	8	10	12	14	16	18	20
$\mathrm{a}\left(\mathrm{km} / \mathrm{hr}^{2}\right)$	0	10	18	25	29	32	20	11	5	2	0

Estimate approximately the velocity acquired by the train in 20 hours using Simpson's one-third rule.
(b) Explain working of second order Runge-Kutta method.

SECTION-D

7. (a) Compute the real root of $x^{3}-5 x+3=0$ in the interval [1, 2] by Regula Falsi Method by performing four iterations.
(b) Discuss the convergence of Newton-Raphson method in detail.
8. (a) Explain the working of Gauss-Elimination method.
(b) Find approximation to $\sqrt{3}$ correct to two decimal places using bisection method.
